首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[UdemyCourseDownloader] Building Recommender Systems with Machine Learning and AI
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2018-12-8 23:23
2025-1-1 08:59
242
4.48 GB
109
磁力链接
magnet:?xt=urn:btih:c48a006613228737ff53c9b640b2a698a820ce24
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmM0OGEwMDY2MTMyMjg3MzdmZjUzYzliNjQwYjJhNjk4YTgyMGNlMjRaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
UdemyCourseDownloader
Building
Recommender
Systems
with
Machine
Learning
and
AI
文件列表
08 Introduction to Deep Learning [Optional]/056 [Activity] Handwriting Recognition with Tensorflow part 1.mp4
181.85MB
01 Getting Started/001 Udemy 101 Getting the Most From This Course.mp4
19.71MB
01 Getting Started/002 [Activity] Install Anaconda course materials and create movie recommendations.mp4
104.08MB
01 Getting Started/003 Course Roadmap.mp4
27.58MB
01 Getting Started/004 Types of Recommenders.mp4
26.82MB
01 Getting Started/005 Understanding You through Implicit and Explicit Ratings.mp4
20.72MB
01 Getting Started/006 Top-N Recommender Architecture.mp4
37.09MB
01 Getting Started/007 [Quiz] Review the basics of recommender systems..mp4
21.3MB
02 Introduction to Python [Optional]/008 [Activity] The Basics of Python.mp4
43.03MB
02 Introduction to Python [Optional]/009 Data Structures in Python.mp4
24.41MB
02 Introduction to Python [Optional]/010 Functions in Python.mp4
12.27MB
02 Introduction to Python [Optional]/011 [Exercise] Booleans loops and a hands-on challenge.mp4
13.86MB
03 Evaluating Recommender Systems/012 TrainTest and Cross Validation.mp4
29.05MB
03 Evaluating Recommender Systems/013 Accuracy Metrics (RMSE MAE).mp4
40.28MB
03 Evaluating Recommender Systems/014 Top-N Hit Rate - Many Ways.mp4
24.53MB
03 Evaluating Recommender Systems/015 Coverage Diversity and Novelty.mp4
13.73MB
03 Evaluating Recommender Systems/016 Churn Responsiveness and AB Tests.mp4
60.94MB
03 Evaluating Recommender Systems/017 [Quiz] Review ways to measure your recommender..mp4
12.83MB
03 Evaluating Recommender Systems/018 [Activity] Walkthrough of RecommenderMetrics.py.mp4
64.3MB
03 Evaluating Recommender Systems/019 [Activity] Walkthrough of TestMetrics.py.mp4
54.36MB
03 Evaluating Recommender Systems/020 [Activity] Measure the Performance of SVD Recommendations.mp4
21.56MB
04 A Recommender Engine Framework/021 Our Recommender Engine Architecture.mp4
32.73MB
04 A Recommender Engine Framework/022 [Activity] Recommender Engine Walkthrough Part 1.mp4
37.88MB
04 A Recommender Engine Framework/023 [Activity] Recommender Engine Walkthrough Part 2.mp4
39.59MB
04 A Recommender Engine Framework/024 [Activity] Review the Results of our Algorithm Evaluation..mp4
34.57MB
05 Content-Based Filtering/025 Content-Based Recommendations and the Cosine Similarity Metric.mp4
61.58MB
05 Content-Based Filtering/026 K-Nearest-Neighbors and Content Recs.mp4
19.61MB
05 Content-Based Filtering/027 [Activity] Producing and Evaluating Content-Based Movie Recommendations.mp4
52.36MB
05 Content-Based Filtering/028 [Activity] Bleeding Edge Alert Mise en Scene Recommendations.mp4
46.52MB
05 Content-Based Filtering/029 [Exercise] Dive Deeper into Content-Based Recommendations.mp4
24.11MB
06 Neighborhood-Based Collaborative Filtering/030 Measuring Similarity and Sparsity.mp4
59.1MB
06 Neighborhood-Based Collaborative Filtering/031 Similarity Metrics.mp4
30.68MB
06 Neighborhood-Based Collaborative Filtering/032 User-based Collaborative Filtering.mp4
34.21MB
06 Neighborhood-Based Collaborative Filtering/033 [Activity] User-based Collaborative Filtering Hands-On.mp4
48.65MB
06 Neighborhood-Based Collaborative Filtering/034 Item-based Collaborative Filtering.mp4
52.23MB
06 Neighborhood-Based Collaborative Filtering/035 [Activity] Item-based Collaborative Filtering Hands-On.mp4
26.81MB
06 Neighborhood-Based Collaborative Filtering/036 [Exercise] Tuning Collaborative Filtering Algorithms.mp4
19.7MB
06 Neighborhood-Based Collaborative Filtering/037 [Activity] Evaluating Collaborative Filtering Systems Offline.mp4
15.43MB
06 Neighborhood-Based Collaborative Filtering/038 [Exercise] Measure the Hit Rate of Item-Based Collaborative Filtering.mp4
9.5MB
06 Neighborhood-Based Collaborative Filtering/039 KNN Recommenders.mp4
24.85MB
06 Neighborhood-Based Collaborative Filtering/040 [Activity] Running User and Item-Based KNN on MovieLens.mp4
23.76MB
06 Neighborhood-Based Collaborative Filtering/041 [Exercise] Experiment with different KNN parameters..mp4
41.26MB
06 Neighborhood-Based Collaborative Filtering/042 Bleeding Edge Alert Translation-Based Recommendations.mp4
21.49MB
07 Matrix Factorization Methods/043 Principal Component Analysis (PCA).mp4
61.2MB
07 Matrix Factorization Methods/044 Singular Value Decomposition.mp4
25.07MB
07 Matrix Factorization Methods/045 [Activity] Running SVD and SVD on MovieLens.mp4
37.49MB
07 Matrix Factorization Methods/046 Improving on SVD.mp4
23.07MB
07 Matrix Factorization Methods/047 [Exercise] Tune the hyperparameters on SVD.mp4
12.46MB
07 Matrix Factorization Methods/048 Bleeding Edge Alert Sparse Linear Methods (SLIM).mp4
26.46MB
08 Introduction to Deep Learning [Optional]/049 Deep Learning Introduction.mp4
17.62MB
08 Introduction to Deep Learning [Optional]/050 Deep Learning Pre-Requisites.mp4
37.05MB
08 Introduction to Deep Learning [Optional]/051 History of Artificial Neural Networks.mp4
84.21MB
08 Introduction to Deep Learning [Optional]/052 [Activity] Playing with Tensorflow.mp4
145.4MB
08 Introduction to Deep Learning [Optional]/053 Training Neural Networks.mp4
38.35MB
08 Introduction to Deep Learning [Optional]/054 Tuning Neural Networks.mp4
31.27MB
08 Introduction to Deep Learning [Optional]/055 Introduction to Tensorflow.mp4
92.47MB
08 Introduction to Deep Learning [Optional]/057 [Activity] Handwriting Recognition with Tensorflow part 2.mp4
57.58MB
08 Introduction to Deep Learning [Optional]/058 Introduction to Keras.mp4
16.45MB
08 Introduction to Deep Learning [Optional]/059 [Activity] Handwriting Recognition with Keras.mp4
88.71MB
08 Introduction to Deep Learning [Optional]/060 Classifier Patterns with Keras.mp4
24.84MB
08 Introduction to Deep Learning [Optional]/061 [Exercise] Predict Political Parties of Politicians with Keras.mp4
100.21MB
08 Introduction to Deep Learning [Optional]/062 Intro to Convolutional Neural Networks (CNNs).mp4
78.19MB
08 Introduction to Deep Learning [Optional]/063 CNN Architectures.mp4
22.54MB
08 Introduction to Deep Learning [Optional]/064 [Activity] Handwriting Recognition with Convolutional Neural Networks (CNNs).mp4
82.28MB
08 Introduction to Deep Learning [Optional]/065 Intro to Recurrent Neural Networks (RNNs).mp4
49.64MB
08 Introduction to Deep Learning [Optional]/066 Training Recurrent Neural Networks.mp4
20.72MB
08 Introduction to Deep Learning [Optional]/067 [Activity] Sentiment Analysis of Movie Reviews using RNNs and Keras.mp4
119.78MB
09 Deep Learning for Recommender Systems/068 Intro to Deep Learning for Recommenders.mp4
42.62MB
09 Deep Learning for Recommender Systems/069 Restricted Boltzmann Machines (RBMs).mp4
31.67MB
09 Deep Learning for Recommender Systems/070 [Activity] Recommendations with RBMs part 1.mp4
144.44MB
09 Deep Learning for Recommender Systems/071 [Activity] Recommendations with RBMs part 2.mp4
76.73MB
09 Deep Learning for Recommender Systems/072 [Activity] Evaluating the RBM Recommender.mp4
37.67MB
09 Deep Learning for Recommender Systems/073 [Exercise] Tuning Restricted Boltzmann Machines.mp4
33.61MB
09 Deep Learning for Recommender Systems/074 Exercise Results Tuning a RBM Recommender.mp4
11.85MB
09 Deep Learning for Recommender Systems/075 Auto-Encoders for Recommendations Deep Learning for Recs.mp4
26.91MB
09 Deep Learning for Recommender Systems/076 [Activity] Recommendations with Deep Neural Networks.mp4
75.41MB
09 Deep Learning for Recommender Systems/077 Clickstream Recommendations with RNNs.mp4
48.72MB
09 Deep Learning for Recommender Systems/078 [Exercise] Get GRU4Rec Working on your Desktop.mp4
7.46MB
09 Deep Learning for Recommender Systems/079 Exercise Results GRU4Rec in Action.mp4
62.65MB
09 Deep Learning for Recommender Systems/080 Bleeding Edge Alert Deep Factorization Machines.mp4
57.36MB
09 Deep Learning for Recommender Systems/081 More Emerging Tech to Watch.mp4
27.64MB
10 Scaling it Up/082 [Activity] Introduction and Installation of Apache Spark.mp4
53.32MB
10 Scaling it Up/083 Apache Spark Architecture.mp4
17.36MB
10 Scaling it Up/084 [Activity] Movie Recommendations with Spark Matrix Factorization and ALS.mp4
55.61MB
10 Scaling it Up/085 [Activity] Recommendations from 20 million ratings with Spark.mp4
50.67MB
10 Scaling it Up/086 Amazon DSSTNE.mp4
42.31MB
10 Scaling it Up/087 DSSTNE in Action.mp4
116.66MB
10 Scaling it Up/088 Scaling Up DSSTNE.mp4
10.44MB
10 Scaling it Up/089 AWS SageMaker and Factorization Machines.mp4
15.58MB
10 Scaling it Up/090 SageMaker in Action Factorization Machines on one million ratings in the cloud.mp4
68.34MB
11 Real-World Challenges of Recommender Systems/091 The Cold Start Problem (and solutions).mp4
27.79MB
11 Real-World Challenges of Recommender Systems/092 [Exercise] Implement Random Exploration.mp4
2.2MB
11 Real-World Challenges of Recommender Systems/093 Exercise Solution Random Exploration.mp4
24.17MB
11 Real-World Challenges of Recommender Systems/094 Stoplists.mp4
19.91MB
11 Real-World Challenges of Recommender Systems/095 [Exercise] Implement a Stoplist.mp4
1.35MB
11 Real-World Challenges of Recommender Systems/096 Exercise Solution Implement a Stoplist.mp4
26.71MB
11 Real-World Challenges of Recommender Systems/097 Filter Bubbles Trust and Outliers.mp4
92.41MB
11 Real-World Challenges of Recommender Systems/098 [Exercise] Identify and Eliminate Outlier Users.mp4
1.77MB
11 Real-World Challenges of Recommender Systems/099 Exercise Solution Outlier Removal.mp4
38.49MB
11 Real-World Challenges of Recommender Systems/100 Fraud The Perils of Clickstream and International Concerns.mp4
58.23MB
11 Real-World Challenges of Recommender Systems/101 Temporal Effects and Value-Aware Recommendations.mp4
54.02MB
12 Case Studies/102 Case Study YouTube Part 1.mp4
26.91MB
12 Case Studies/103 Case Study YouTube Part 2.mp4
26.26MB
12 Case Studies/104 Case Study Netflix Part 1.mp4
27.55MB
12 Case Studies/105 Case Study Netflix Part 2.mp4
26.57MB
13 Hybrid Approaches/106 Hybrid Recommenders and Exercise.mp4
18.4MB
13 Hybrid Approaches/107 Exercise Solution Hybrid Recommenders.mp4
33.18MB
14 Wrapping Up/108 More to Explore.mp4
38.93MB
14 Wrapping Up/109 Bonus Lecture Companion Book and More Courses from Sundog Education.mp4
21.12MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统