24. Python - Basic Python Syntax/9. Understanding Line Continuation.mp42.35MB
25. Python - Other Python Operators/1. Comparison Operators.mp410.18MB
25. Python - Other Python Operators/3. Logical and Identity Operators.mp430.06MB
26. Python - Conditional Statements/1. The IF Statement.mp413.62MB
26. Python - Conditional Statements/3. The ELSE Statement.mp413.59MB
26. Python - Conditional Statements/4. The ELIF Statement.mp433.15MB
26. Python - Conditional Statements/5. A Note on Boolean Values.mp411.26MB
27. Python - Python Functions/1. Defining a Function in Python.mp47.75MB
27. Python - Python Functions/2. How to Create a Function with a Parameter.mp423.88MB
27. Python - Python Functions/3. Defining a Function in Python - Part II.mp414.79MB
27. Python - Python Functions/4. How to Use a Function within a Function.mp48.14MB
27. Python - Python Functions/5. Conditional Statements and Functions.mp415.69MB
27. Python - Python Functions/6. Functions Containing a Few Arguments.mp47.58MB
27. Python - Python Functions/7. Built-in Functions in Python.mp422.01MB
28. Python - Sequences/1. Lists.mp421.99MB
28. Python - Sequences/3. Using Methods.mp421.95MB
28. Python - Sequences/5. List Slicing.mp430.77MB
28. Python - Sequences/6. Tuples.mp416.67MB
28. Python - Sequences/7. Dictionaries.mp425.04MB
29. Python - Iterations/1. For Loops.mp411.8MB
29. Python - Iterations/3. While Loops and Incrementing.mp415.45MB
29. Python - Iterations/4. Lists with the range() Function.mp411.42MB
29. Python - Iterations/6. Conditional Statements and Loops.mp416.1MB
29. Python - Iterations/7. Conditional Statements, Functions, and Loops.mp49.48MB
29. Python - Iterations/8. How to Iterate over Dictionaries.mp416.98MB
3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4126.87MB
30. Python - Advanced Python Tools/3. Modules and Packages.mp48.5MB
30. Python - Advanced Python Tools/5. What is the Standard Library.mp418.03MB
30. Python - Advanced Python Tools/7. Importing Modules in Python.mp419.93MB
31. Part 5 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.mp417.32MB
32. Advanced Statistical Methods - Linear regression with StatsModels/1. The Linear Regression Model.mp457.37MB
32. Advanced Statistical Methods - Linear regression with StatsModels/10. Using Seaborn for Graphs.mp412.24MB
32. Advanced Statistical Methods - Linear regression with StatsModels/11. How to Interpret the Regression Table.mp444.65MB
32. Advanced Statistical Methods - Linear regression with StatsModels/13. Decomposition of Variability.mp449.66MB
32. Advanced Statistical Methods - Linear regression with StatsModels/15. What is the OLS.mp428.31MB
32. Advanced Statistical Methods - Linear regression with StatsModels/17. R-Squared.mp441.03MB
32. Advanced Statistical Methods - Linear regression with StatsModels/3. Correlation vs Regression.mp414.74MB
32. Advanced Statistical Methods - Linear regression with StatsModels/5. Geometrical Representation of the Linear Regression Model.mp45.13MB
32. Advanced Statistical Methods - Linear regression with StatsModels/7. Python Packages Installation.mp440.59MB
32. Advanced Statistical Methods - Linear regression with StatsModels/8. First Regression in Python.mp444.56MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/1. Multiple Linear Regression.mp421.52MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/11. A2 No Endogeneity.mp435.68MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/13. A3 Normality and Homoscedasticity.mp442.7MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/14. A4 No Autocorrelation.mp431.52MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/16. A5 No Multicollinearity.mp428.71MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/18. Dealing with Categorical Data - Dummy Variables.mp455.67MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/20. Making Predictions with the Linear Regression.mp424.69MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/3. Adjusted R-Squared.mp454.84MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/6. Test for Significance of the Model (F-Test).mp416.43MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/7. OLS Assumptions.mp421.86MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/9. A1 Linearity.mp412.6MB
34. Advanced Statistical Methods - Linear Regression with sklearn/1. What is sklearn and How is it Different from Other Packages.mp427.26MB
34. Advanced Statistical Methods - Linear Regression with sklearn/10. Feature Selection (F-regression).mp429.52MB
34. Advanced Statistical Methods - Linear Regression with sklearn/12. Creating a Summary Table with p-values.mp412.31MB
34. Advanced Statistical Methods - Linear Regression with sklearn/14. Feature Scaling (Standardization).mp439.09MB
34. Advanced Statistical Methods - Linear Regression with sklearn/15. Feature Selection through Standardization of Weights.mp434.9MB
34. Advanced Statistical Methods - Linear Regression with sklearn/16. Predicting with the Standardized Coefficients.mp425.96MB
34. Advanced Statistical Methods - Linear Regression with sklearn/18. Underfitting and Overfitting.mp416.95MB
34. Advanced Statistical Methods - Linear Regression with sklearn/19. Train - Test Split Explained.mp449.17MB
34. Advanced Statistical Methods - Linear Regression with sklearn/2. How are Going to Approach this Section.mp419.41MB
34. Advanced Statistical Methods - Linear Regression with sklearn/3. Simple Linear Regression with sklearn.mp434.77MB
34. Advanced Statistical Methods - Linear Regression with sklearn/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp432.01MB
34. Advanced Statistical Methods - Linear Regression with sklearn/7. Multiple Linear Regression with sklearn.mp420.08MB
34. Advanced Statistical Methods - Linear Regression with sklearn/8. Calculating the Adjusted R-Squared in sklearn.mp430.89MB
35. Advanced Statistical Methods - Practical Example Linear Regression/1. Practical Example Linear Regression (Part 1).mp497.08MB
35. Advanced Statistical Methods - Practical Example Linear Regression/2. Practical Example Linear Regression (Part 2).mp446MB
35. Advanced Statistical Methods - Practical Example Linear Regression/4. Practical Example Linear Regression (Part 3).mp423.7MB
35. Advanced Statistical Methods - Practical Example Linear Regression/6. Practical Example Linear Regression (Part 4).mp456.05MB
35. Advanced Statistical Methods - Practical Example Linear Regression/8. Practical Example Linear Regression (Part 5).mp457.89MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.mp428.69MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.mp411.02MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.mp416.44MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp429.09MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.mp49.11MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp426.35MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).mp422.35MB
49. Deep Learning - Preprocessing/1. Preprocessing Introduction.mp427.78MB
49. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.mp411.85MB
49. Deep Learning - Preprocessing/3. Standardization.mp450.98MB
49. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.mp418.61MB
49. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.mp428.94MB
5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.mp4138.31MB
5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.mp4123.51MB
5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.mp442.78MB
5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.mp499.33MB
5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.mp4125.14MB
5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).mp436.82MB
5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.mp429.93MB
5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.mp475.5MB
5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.mp422.04MB
5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.mp489.94MB
5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).mp429.54MB
50. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.mp417.82MB
50. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp422.59MB
50. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.mp418.91MB
50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.mp456.39MB
50. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.mp425.87MB
50. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.mp443.9MB
50. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.mp412.85MB
50. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.mp446.69MB
50. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.mp462.78MB
51. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.mp487.65MB
51. Deep Learning - Business Case Example/10. Business Case Testing the Model.mp411.2MB
51. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.mp436.39MB
51. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.mp412.22MB
51. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.mp439.41MB
51. Deep Learning - Business Case Example/4. Business Case Preprocessing.mp4103.42MB
51. Deep Learning - Business Case Example/6. Creating a Data Provider.mp476.35MB
51. Deep Learning - Business Case Example/7. Business Case Model Outline.mp453.12MB
51. Deep Learning - Business Case Example/8. Business Case Optimization.mp441.52MB
51. Deep Learning - Business Case Example/9. Business Case Interpretation.mp425.74MB
52. Deep Learning - Conclusion/1. Summary on What You've Learned.mp439.75MB
52. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.mp420.12MB
52. Deep Learning - Conclusion/3. An overview of CNNs.mp458.8MB
52. Deep Learning - Conclusion/5. An Overview of RNNs.mp425.26MB
52. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.mp444.77MB
53. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.mp469.04MB
53. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.mp4104.09MB
53. Software Integration/5. Taking a Closer Look at APIs.mp4115.6MB
53. Software Integration/7. Communication between Software Products through Text Files.mp460.35MB
54. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp452.3MB
54. Case Study - What's Next in the Course/2. The Business Task.mp439.16MB
54. Case Study - What's Next in the Course/3. Introducing the Data Set.mp440.87MB
55. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.mp440.58MB
55. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.mp481.11MB
55. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.mp413.74MB
55. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.mp474.6MB
55. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.mp438.74MB
55. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.mp423.16MB
55. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.mp414.02MB
55. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.mp425.67MB
55. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.mp457.28MB
55. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.mp447.8MB
55. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.mp427.96MB
55. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.mp461.9MB
55. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.mp429.52MB
55. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.mp439.59MB
55. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.mp421.63MB
55. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.mp427.85MB
55. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.mp420.19MB
55. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.mp461.77MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1. Exploring the Problem with a Machine Learning Mindset.mp427.54MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.mp440.41MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.mp439.56MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.mp449.07MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.mp437.45MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.mp444.48MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/2. Creating the Targets for the Logistic Regression.mp445.79MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/3. Selecting the Inputs for the Logistic Regression.mp416.75MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/4. Standardizing the Data.mp420.6MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/5. Splitting the Data for Training and Testing.mp452.77MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/6. Fitting the Model and Assessing its Accuracy.mp441.62MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/7. Creating a Summary Table with the Coefficients and Intercept.mp438.88MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/8. Interpreting the Coefficients for Our Problem.mp452.38MB
56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp441.19MB
57. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.mp425.49MB
57. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.mp454.25MB
58. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.mp456.56MB
58. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.mp459.34MB
58. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.mp440.63MB
6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.mp4103.51MB
7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.mp454.38MB
8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.mp472.85MB
9. Part 2 Probability/1. The Basic Probability Formula.mp485.92MB
9. Part 2 Probability/3. Computing Expected Values.mp475.69MB
9. Part 2 Probability/5. Frequency.mp461.73MB
9. Part 2 Probability/7. Events and Their Complements.mp459.15MB