首页 磁力链接怎么用

[CourseClub.Me] O'REILLY - Python for Data Science Complete Video Course Video Training

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-2-9 16:20 2025-1-4 06:17 301 13.13 GB 89
二维码链接
[CourseClub.Me] O'REILLY - Python for Data Science Complete Video Course Video Training的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 01 - Python for Data Science Complete Video Course Video Training - Introduction.mp476.64MB
  2. 02 - Learning objectives.mp411.21MB
  3. 03 - 1.1 History of Python in data science.mp478.08MB
  4. 04 - 1.2 Overview of Python data science libraries.mp444.37MB
  5. 05 - 1.3 Future trends of Python in AI, ML, and data science.mp477.54MB
  6. 06 - Learning objectives.mp425MB
  7. 07 - 2.1 Create your first Colab document.mp4328.82MB
  8. 08 - 2.2 Manage Colab documents.mp4451.8MB
  9. 09 - 2.3 Use magic functions.mp4156.26MB
  10. 10 - 2.4 Understand compatibility with Jupyter.mp4258.05MB
  11. 11 - Learning objectives.mp428.81MB
  12. 12 - 3.1 Write procedural code.mp4112.86MB
  13. 13 - 3.2 Use simple expressions and variables.mp4173.93MB
  14. 14 - 3.3 Work with the built-in types.mp466.6MB
  15. 15 - 3.4 Learn to Print.mp470.6MB
  16. 16 - 3.5 Perform basic math operations.mp4167.11MB
  17. 17 - 3.6 Use classes and objects with dot notation.mp4194.46MB
  18. 18 - Learning objectives.mp417MB
  19. 19 - 4.1 Use string methods.mp4131.93MB
  20. 20 - 4.2 Format strings.mp498.69MB
  21. 21 - 4.3 Manipulate strings - membership, slicing, and concatenation.mp4136.75MB
  22. 22 - 4.4 Learn to use unicode.mp474.37MB
  23. 23 - Learning objectives.mp422.45MB
  24. 24 - 5.1 Use lists and tuples.mp4369.96MB
  25. 25 - 5.2 Explore dictionaries.mp4213.33MB
  26. 26 - 5.3 Dive into sets.mp483.03MB
  27. 27 - 5.4 Work with the numpy array.mp4234.44MB
  28. 28 - 5.5 Use the Pandas DataFrame.mp4116.78MB
  29. 29 - 5.6 Use the Pandas Series.mp471.62MB
  30. 30 - Learning objectives.mp424MB
  31. 31 - 6.1 Convert lists to dicts and back.mp474.45MB
  32. 32 - 6.2 Convert dicts to Pandas Dataframe.mp4104.57MB
  33. 33 - 6.3 Convert characters to integers and back.mp435.73MB
  34. 34 - 6.4 Convert between hexadecimal, binary, and floats.mp4101.36MB
  35. 35 - Learning objectives.mp424.93MB
  36. 36 - 7.1 Learn to loop with for loops.mp444.92MB
  37. 37 - 7.2 Repeat with while loops.mp450.23MB
  38. 38 - 7.3 Learn to handle exceptions.mp4111.94MB
  39. 39 - 7.4 Use conditionals.mp4168.25MB
  40. 40 - Learning objectives.mp422.46MB
  41. 41 - 8.1 Write and use functions.mp4206.47MB
  42. 42 - 8.2 Learn to use decorators.mp4210.94MB
  43. 43 - 8.3 Compose closure functions.mp4132.86MB
  44. 44 - 8.4 Use lambdas.mp4106.23MB
  45. 45 - 8.5 Advanced Use of Functions.mp4319.02MB
  46. 46 - Learning objectives.mp433.79MB
  47. 47 - 9.1 Learn NumPy.mp4287.95MB
  48. 48 - 9.2 Learn SciPy.mp4664.99MB
  49. 49 - 9.3 Learn Pandas.mp4335.61MB
  50. 50 - 9.4 Learn TensorFlow.mp4341.9MB
  51. 51 - 9.5 Use Seaborn for 2D plots.mp4261.65MB
  52. 52 - 9.6 Use Plotly for interactive plots.mp4262.06MB
  53. 53 - 9.7 Specialized Visualization Libraries.mp4241.69MB
  54. 54 - 9.8 Learn Natural Language Processing Libraries.mp4124.95MB
  55. 55 - Learning objectives.mp427.7MB
  56. 56 - 10.1 Understand functional programming.mp4151.13MB
  57. 57 - 10.2 Apply functions to data science workflows.mp447.12MB
  58. 58 - 10.3 Use map_reduce_filter.mp495.23MB
  59. 59 - 10.4 Use list comprehensions.mp498.27MB
  60. 60 - 10.5 Use dictionary comprehensions.mp415.45MB
  61. 61 - Learning objectives.mp417.83MB
  62. 62 - 11.1 Use generators.mp469.4MB
  63. 63 - 11.2 Design generator pipelines.mp4141.25MB
  64. 64 - 11.3 Implement lazy evaluation functions.mp459.14MB
  65. 65 - Learning objectives.mp420.97MB
  66. 66 - 12.1 Perform simple pattern matching.mp497.05MB
  67. 67 - 12.2 Use regular expressions.mp4284.59MB
  68. 68 - 12.3 Learn text processing techniques - Beautiful Soup.mp487.6MB
  69. 69 - Learning objectives.mp418.2MB
  70. 70 - 13.1 Sort in Python.mp4186.66MB
  71. 71 - 13.2 Create custom sorting functions.mp4229.33MB
  72. 72 - 13.3 Sort in Pandas.mp4301.95MB
  73. 73 - Learning objectives.mp422.1MB
  74. 74 - 14.1 Read and write files - file, pickle, CSV, JSON.mp4214.71MB
  75. 75 - 14.2 Read and write with Pandas - CSV, JSON.mp4336.5MB
  76. 76 - 14.3 Read and write using web resources (requests, boto, github).mp4110.86MB
  77. 77 - 14.4 Use function-based concurrency.mp4608.14MB
  78. 78 - Learning objectives.mp420.91MB
  79. 79 - 15.1 Share with Github.mp4358.09MB
  80. 80 - 15.2 Create Kaggle Kernels.mp4207.48MB
  81. 81 - 15.3 Collaborate with Colab.mp4125.18MB
  82. 82 - 15.4 Post public graphs with Plotly.mp4103.5MB
  83. 83 - Learning Objectives.mp428.71MB
  84. 84 - 16.1 PyTest.mp4372.92MB
  85. 85 - 16.2 Visual Studio Code.mp4364.64MB
  86. 86 - 16.3 Vim.mp4136.81MB
  87. 87 - 16.4 Ludwig (Open Source AutoML).mp4146.48MB
  88. 88 - 16.5 Sklearn Algorithm Cheatsheet.mp4104.05MB
  89. 89 - 16.6 Recommendations.mp447.75MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统