首页 磁力链接怎么用

Experimental Design for Data Analysis

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2025-5-18 01:14 2025-7-31 07:58 77 343.32 MB 40
二维码链接
Experimental Design for Data Analysis的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 01. Course Overview/01. Course Overview.mp43.7MB
  2. 02. Designing an Experiment for Data Analysis/01. Module Overview.mp42.04MB
  3. 02. Designing an Experiment for Data Analysis/02. Prerequisites and Course Outline.mp41.75MB
  4. 02. Designing an Experiment for Data Analysis/03. Connecting the Dots with Data.mp44.35MB
  5. 02. Designing an Experiment for Data Analysis/04. Hypothesis Testing.mp411.93MB
  6. 02. Designing an Experiment for Data Analysis/05. T-tests.mp45.19MB
  7. 02. Designing an Experiment for Data Analysis/06. ANOVA.mp47.64MB
  8. 02. Designing an Experiment for Data Analysis/07. Designing a Machine Learning Experiment.mp48.5MB
  9. 02. Designing an Experiment for Data Analysis/08. Summary.mp42.58MB
  10. 03. Building and Training a Machine Learning Model/01. Module Overview.mp42.35MB
  11. 03. Building and Training a Machine Learning Model/02. Getting Started with Azure ML Studio.mp413.5MB
  12. 03. Building and Training a Machine Learning Model/03. Loading and Visualizing Data.mp412.53MB
  13. 03. Building and Training a Machine Learning Model/04. Exploring Relationships in Data.mp412MB
  14. 03. Building and Training a Machine Learning Model/05. Preprocessing and Preparing Data.mp416.08MB
  15. 03. Building and Training a Machine Learning Model/06. Building and Training a Regression Model for Price Prediction.mp419.86MB
  16. 03. Building and Training a Machine Learning Model/07. Building and Training a Regression Model in Python.mp423.26MB
  17. 03. Building and Training a Machine Learning Model/08. Summary.mp41.96MB
  18. 04. Understanding and Overcoming Common Problems in Data Modeling/01. Module Overview.mp41.72MB
  19. 04. Understanding and Overcoming Common Problems in Data Modeling/02. Overfitting and Techniques to Mitigate Overfitting.mp410.58MB
  20. 04. Understanding and Overcoming Common Problems in Data Modeling/03. Accuracy, Precision, and Recall.mp47.8MB
  21. 04. Understanding and Overcoming Common Problems in Data Modeling/04. The ROC Curve.mp46.17MB
  22. 04. Understanding and Overcoming Common Problems in Data Modeling/05. Preparing and Processing Data.mp418.75MB
  23. 04. Understanding and Overcoming Common Problems in Data Modeling/06. Building Training and Evaluating a Classification Model.mp420.13MB
  24. 04. Understanding and Overcoming Common Problems in Data Modeling/07. Summary.mp42.09MB
  25. 05. Leveraging Different Validation Strategies in Data Modeling/01. Module Overview.mp41.99MB
  26. 05. Leveraging Different Validation Strategies in Data Modeling/02. Cross-validation in the ML Workflow.mp43.48MB
  27. 05. Leveraging Different Validation Strategies in Data Modeling/03. Singular Cross-validation.mp45.15MB
  28. 05. Leveraging Different Validation Strategies in Data Modeling/04. Cross-validation Using Azure ML Studio.mp415.52MB
  29. 05. Leveraging Different Validation Strategies in Data Modeling/05. K-fold Cross-validation and Variants.mp49.91MB
  30. 05. Leveraging Different Validation Strategies in Data Modeling/06. K-fold Cross-validation in scikit-learn.mp415.58MB
  31. 05. Leveraging Different Validation Strategies in Data Modeling/07. Repeated K-fold Cross-validation in scikit-learn.mp49.43MB
  32. 05. Leveraging Different Validation Strategies in Data Modeling/08. Stratified K-fold Cross-validation in scikit-learn.mp412.59MB
  33. 05. Leveraging Different Validation Strategies in Data Modeling/09. Group K-fold in scikit-learn.mp48.77MB
  34. 05. Leveraging Different Validation Strategies in Data Modeling/10. Summary.mp41.98MB
  35. 06. Tuning Hyperparameters Using Cross Validation Scores/01. Module Overview.mp43.43MB
  36. 06. Tuning Hyperparameters Using Cross Validation Scores/02. Hyperparameter Tuning.mp43.19MB
  37. 06. Tuning Hyperparameters Using Cross Validation Scores/03. Decision Trees.mp44.56MB
  38. 06. Tuning Hyperparameters Using Cross Validation Scores/04. Hyperparameter Tuning a Decision Forest Classifier.mp416.95MB
  39. 06. Tuning Hyperparameters Using Cross Validation Scores/05. Tuning and Scoring Multiple Models.mp412.6MB
  40. 06. Tuning Hyperparameters Using Cross Validation Scores/06. Summary and Further Study.mp41.74MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统