首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
Packt Publishing - Deep Dive into Python Machine Learning
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2018-2-14 22:04
2024-12-17 04:32
204
2.58 GB
187
磁力链接
magnet:?xt=urn:btih:8d48ebb15a1af945bf781071adb6be1aa5602953
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjhkNDhlYmIxNWExYWY5NDViZjc4MTA3MWFkYjZiZTFhYTU2MDI5NTNaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
Packt
Publishing
-
Deep
Dive
into
Python
Machine
Learning
文件列表
01 - The Course Overview.mp4
14.93MB
02 - Python Basic Syntax and Block Structure.mp4
22.54MB
03 - Built-in Data Structures and Comprehensions.mp4
17.79MB
04 - First-Class Functions and Classes.mp4
12.33MB
05 - Extensive Standard Library.mp4
31.14MB
06 - New in Python 3.5.mp4
21.01MB
07 - Downloading and Installing Python.mp4
15.34MB
08 - Using the Command-Line and the Interactive Shell.mp4
7.1MB
09 - Installing Packages with pip.mp4
11.04MB
10 - Finding Packages in the Python Package Index.mp4
21.78MB
100 - Compressing an Image Using Vector Quantization.mp4
16.33MB
101 - Building a Mean Shift Clustering.mp4
11.26MB
102 - Grouping Data Using Agglomerative Clustering.mp4
13.54MB
103 - Evaluating the Performance of Clustering Algorithms.mp4
12.74MB
104 - Automatically Estimating the Number of Clusters Using DBSCAN.mp4
14.94MB
105 - Finding Patterns in Stock Market Data.mp4
11.34MB
106 - Building a Customer Segmentation Model.mp4
9.78MB
107 - Building Function Composition for Data Processing.mp4
13.67MB
108 - Building Machine Learning Pipelines.mp4
15.17MB
109 - Finding the Nearest Neighbors.mp4
8.05MB
11 - Creating an Empty Package.mp4
11.59MB
110 - Constructing a k-nearest Neighbors Classifier.mp4
19.77MB
111 - Constructing a k-nearest Neighbors Regressor.mp4
9.75MB
112 - Computing the Euclidean Distance Score.mp4
9.21MB
113 - Computing the Pearson Correlation Score.mp4
8.32MB
114 - Finding Similar Users in a Dataset.mp4
6.89MB
115 - Generating Movie Recommendations.mp4
10.2MB
116 - Preprocessing Data Using Tokenization.mp4
12.67MB
117 - Stemming Text Data.mp4
8.77MB
118 - Converting Text to Its Base Form Using Lemmatization.mp4
8.25MB
119 - Dividing Text Using Chunking.mp4
7.42MB
12 - Adding Modules to the Package.mp4
7.99MB
120 - Building a Bag-of-Words Model.mp4
11.71MB
121 - Building a Text Classifier.mp4
17.97MB
122 - Identifying the Gender.mp4
10MB
123 - Analyzing the Sentiment of a Sentence.mp4
14.39MB
124 - Identifying Patterns in Text Using Topic Modelling.mp4
19.76MB
125 - Reading and Plotting Audio Data.mp4
9.35MB
126 - Transforming Audio Signals into the Frequency Domain.mp4
9.32MB
127 - Generating Audio Signals with Custom Parameters.mp4
7.64MB
128 - Synthesizing Music.mp4
9.81MB
129 - Extracting Frequency Domain Features.mp4
8.13MB
13 - Importing One of the Package's Modules from Another.mp4
9.29MB
130 - Building Hidden Markov Models.mp4
9.6MB
131 - Building a Speech Recognizer.mp4
12.94MB
132 - Transforming Data into the Time Series Format.mp4
13.23MB
133 - Slicing Time Series Data.mp4
5.32MB
134 - Operating on Time Series Data.mp4
6.79MB
135 - Extracting Statistics from Time Series.mp4
10.76MB
136 - Building Hidden Markov Models for Sequential Data.mp4
17.7MB
137 - Building Conditional Random Fields for Sequential Text Data.mp4
19.05MB
138 - Analyzing Stock Market Data with Hidden Markov Models.mp4
11.84MB
139 - Operating on Images Using OpenCV-Python.mp4
16.06MB
14 - Adding Static Data Files to the Package.mp4
4.54MB
140 - Detecting Edges.mp4
13.63MB
141 - Histogram Equalization.mp4
11.46MB
142 - Detecting Corners and SIFT Feature Points.mp4
16.86MB
143 - Building a Star Feature Detector.mp4
7.35MB
144 - Creating Features Using Visual Codebook and Vector Quantization.mp4
19.96MB
145 - Training an Image Classifier Using Extremely Random Forests.mp4
11.41MB
146 - Building an object recognizer.mp4
7.72MB
147 - Capturing and Processing Video from a Webcam.mp4
6.95MB
148 - Building a Face Detector using Haar Cascades.mp4
11.01MB
149 - Building Eye and Nose Detectors.mp4
8.23MB
15 - PEP 8 and Writing Readable Code.mp4
23.79MB
150 - Performing Principal Component Analysis.mp4
7.98MB
151 - Performing Kernel Principal Component Analysis.mp4
8.42MB
152 - Performing Blind Source Separation.mp4
10.05MB
153 - Building a Face Recognizer Using a Local Binary Patterns Histogram.mp4
20.53MB
154 - Building a Perceptron.mp4
9.19MB
155 - Building a Single-Layer Neural Network.mp4
5.93MB
156 - Building a deep neural network.mp4
9.15MB
157 - Creating a Vector Quantizer.mp4
8.36MB
158 - Building a Recurrent Neural Network for Sequential Data Analysis.mp4
10.18MB
159 - Visualizing the Characters in an Optical Character Recognition Database.mp4
5.17MB
16 - Using Version Control.mp4
16.75MB
160 - Building an Optical Character Recognizer Using Neural Networks.mp4
10.37MB
161 - Plotting 3D Scatter plots.mp4
8.03MB
162 - Plotting Bubble Plots.mp4
3.66MB
163 - Animating Bubble Plots.mp4
9.43MB
164 - Drawing Pie Charts.mp4
5.57MB
165 - Plotting Date-Formatted Time Series Data.mp4
5.96MB
166 - Plotting Histograms.mp4
3.67MB
167 - Visualizing Heat Maps.mp4
4MB
168 - Animating Dynamic Signals.mp4
6.79MB
169 - The Course Overview.mp4
17.84MB
17 - Using venv to Create a Stable and Isolated Work Area.mp4
8.15MB
170 - What Is Deep Learning.mp4
7.37MB
171 - Open Source Libraries for Deep Learning.mp4
21.33MB
172 - Deep Learning Hello World! Classifying the MNIST Data.mp4
34.69MB
173 - Introduction to Backpropagation.mp4
9.32MB
174 - Understanding Deep Learning with Theano.mp4
19.26MB
175 - Optimizing a Simple Model in Pure Theano.mp4
33.58MB
176 - Keras Behind the Scenes.mp4
24.43MB
177 - Fully Connected or Dense Layers.mp4
21.89MB
178 - Convolutional and Pooling Layers.mp4
25.35MB
179 - Large Scale Datasets, ImageNet, and Very Deep Neural Networks.mp4
20.32MB
18 - Getting the Most Out of docstrings 1 - PEP 257 and docutils.mp4
38.58MB
180 - Loading Pre-trained Models with Theano.mp4
23.52MB
181 - Reusing Pre-trained Models in New Applications.mp4
31.83MB
182 - Theano for Loops – the scan Module.mp4
19.47MB
183 - Recurrent Layers.mp4
24.84MB
184 - Recurrent Versus Convolutional Layers.mp4
6.58MB
185 - Recurrent Networks –Training a Sentiment Analysis Model for Text.mp4
29.72MB
186 - Bonus Challenge – Automatic Image Captioning.mp4
21.25MB
187 - Captioning TensorFlow – Google's Machine Learning Library.mp4
21.61MB
19 - Getting the Most Out of docstrings 2 - doctest.mp4
7.42MB
20 - Making a Package Executable via python -m.mp4
9.19MB
21 - Handling Command-Line Arguments with argparse.mp4
12.23MB
22 - Interacting with the User.mp4
8.64MB
23 - Executing Other Programs with Subprocess.mp4
45.53MB
24 - Using Shell Scripts or Batch Files to Run Our Programs.mp4
4.62MB
25 - Using concurrent.futures.mp4
46.73MB
26 - Using Multiprocessing.mp4
21.9MB
27 - Understanding Why This Isn't Like Parallel Processing.mp4
17.4MB
28 - Using the asyncio Event Loop and Coroutine Scheduler.mp4
13.35MB
29 - Waiting for Data to Become Available.mp4
6.66MB
30 - Synchronizing Multiple Tasks.mp4
13.32MB
31 - Communicating Across the Network.mp4
11.34MB
32 - Using Function Decorators.mp4
12.98MB
33 - Function Annotations.mp4
13.61MB
34 - Class Decorators.mp4
11.44MB
35 - Metaclasses.mp4
9.83MB
36 - Context Managers.mp4
11.35MB
37 - Descriptors.mp4
19.63MB
38 - Understanding the Principles of Unit Testing.mp4
8.5MB
39 - Using the unittest Package.mp4
17.13MB
40 - Using unittest.mock.mp4
10.55MB
41 - Using unittest's Test Discovery.mp4
9.72MB
42 - Using Nose for Unified Test Discover and Reporting.mp4
11MB
43 - What Does Reactive Programming Mean.mp4
4.82MB
44 - Building a Simple Reactive Programming Framework.mp4
14.64MB
45 - Using the Reactive Extensions for Python (RxPY).mp4
33.64MB
46 - Microservices and the Advantages of Process Isolation.mp4
8.2MB
47 - Building a High-Level Microservice with Flask.mp4
24.79MB
48 - Building a Low-Level Microservice with nameko.mp4
12.78MB
49 - Advantages and Disadvantages of Compiled Code.mp4
10.42MB
50 - Accessing a Dynamic Library Using ctypes.mp4
14.92MB
51 - Interfacing with C Code Using Cython.mp4
27.33MB
52 - The Course Overview.mp4
9.69MB
53 - Brief Introduction to Data Mining.mp4
8.59MB
54 - Data Mining Basic Concepts and Applications.mp4
14.24MB
55 - Why Python.mp4
5.22MB
56 - Basics of Python.mp4
9.58MB
57 - Installing IPython.mp4
3.88MB
58 - Installing the Numpy Library.mp4
8.8MB
59 - Installing the pandas Library.mp4
14.97MB
60 - Installing Matplotlib.mp4
11.96MB
61 - Installing scikit-learn.mp4
3.75MB
62 - Data Cleaning.mp4
9.19MB
63 - Data Preprocessing Techniques.mp4
8.41MB
64 - Linear Regression Basic Model Approach.mp4
14.03MB
65 - Evaluating Regression Models.mp4
9.14MB
66 - Basic Regression Model Implementation to Predict House Prices.mp4
35.83MB
67 - Regression Model Implementation to Predict Television Show Viewers.mp4
40.35MB
68 - Logistic Regression.mp4
6.92MB
69 - K – Nearest Neighbors Classifier.mp4
8.89MB
70 - Support Vector Machine.mp4
9.4MB
71 - Logistic Regression Model Implementation.mp4
47.17MB
72 - K – Nearest Neighbor Classifier Implementation.mp4
38.31MB
73 - Preprocessing Data Using Different Techniques.mp4
26.46MB
74 - Label Encoding.mp4
10.54MB
75 - Building a Linear Regressor.mp4
19.66MB
76 - Regression Accuracy and Model Persistence.mp4
17.5MB
77 - Building a Ridge Regressor.mp4
12.3MB
78 - Building a Polynomial Regressor.mp4
11.43MB
79 - Estimating housing prices.mp4
16.9MB
80 - Computing relative importance of features.mp4
7.58MB
81 - Estimating bicycle demand distribution.mp4
17.97MB
82 - Building a Simple Classifier.mp4
12.21MB
83 - Building a Logistic Regression Classifier.mp4
20.2MB
84 - Building a Naive Bayes’ Classifier.mp4
8.74MB
85 - Splitting the Dataset for Training and Testing.mp4
6.14MB
86 - Evaluating the Accuracy Using Cross-Validation.mp4
8.21MB
87 - Visualizing the Confusion Matrix and Extracting the Performance Report.mp4
15.79MB
88 - Evaluating Cars based on Their Characteristics.mp4
23.16MB
89 - Extracting Validation Curves.mp4
14.08MB
90 - Extracting Learning Curves.mp4
7.31MB
91 - Extracting the Income Bracket.mp4
15.04MB
92 - Building a Linear Classifier Using Support Vector Machine.mp4
20.2MB
93 - Building Nonlinear Classifier Using SVMs.mp4
8MB
94 - Tackling Class Imbalance.mp4
13.3MB
95 - Extracting Confidence Measurements.mp4
12.01MB
96 - Finding Optimal Hyper-Parameters.mp4
10.42MB
97 - Building an Event Predictor.mp4
16.95MB
98 - Estimating Traffic.mp4
10.82MB
99 - Clustering Data Using the k-means Algorithm.mp4
13.45MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统