11 - Project 10 Finance Stack Backtesting Investment Strategies US Stocks/121 - Backtesting Simple Moving Averages SMA Strategies.mp426.29MB
11 - Project 10 Finance Stack Backtesting Investment Strategies US Stocks/122 - Backtesting the Perfect Strategy in case you can predict the future.mp416.3MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/123 - Project Overview.mp48.97MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/125 - Importing & Merging the Data.mp424.06MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/126 - Transforming the Data.mp464.29MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/127 - Explanatory Data Analysis Risk Return & Correlations.mp460.57MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/128 - Index Tracking Introduction.mp430.73MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/129 - Index Tracking Selecting the Tracking Stocks.mp423.35MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/130 - Index Tracking A simple Tracking Portfolio.mp442.87MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/131 - Index Tracking The optimal Tracking Portfolio.mp435.3MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/132 - Forward Testing Part 1.mp432.75MB
12 - Project 11 Finance Stack Index Tracking and Forward Testing US Stocks/133 - Forward Testing Part 2.mp434.43MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/134 - Project Overview.mp44.25MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/136 - Project Brief for SelfCoders.mp468.09MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/137 - Data Import and first Inspection.mp413.87MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/138 - Merging and Concatenating.mp424.4MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/139 - Data Cleaning Part 1.mp429.98MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/140 - Data Cleaning Part 2.mp416.29MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/141 - What are the most successful countries of all times.mp425.24MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/142 - Do GDP Population and Politics matter.mp433.14MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/143 - Statistical Analysis and Hypothesis Testing with scipy.mp450.88MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/144 - Aggregating and Ranking.mp426.61MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/145 - Summer Games vs Winter Games does Geographical Location matter.mp423.22MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/146 - Men vs Women do Culture & Religion matter.mp415.01MB
13 - Project 12 Explanatory Data Analysis and Seaborn Visualization Olympic Games/147 - Do Traditions matter.mp431.44MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/148 - Intro and Overview.mp411.09MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/151 - Important Recap Pandas Display Options Changed in Version 025.mp418.96MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/152 - Info method new and extended output.mp47.52MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/153 - NEW Extension dtypes nullable dtypes Why do we need them.mp415.56MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/154 - Creating the NEW extension dtypes with convertdtypes.mp419.11MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/155 - NEW pdNA value for missing values.mp422.15MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/156 - The NEW nullable Int64Dtype.mp415.49MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/157 - The NEW StringDtype.mp424.36MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/158 - The NEW nullable BooleanDtype.mp412.79MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/159 - Addition of the ignoreindex parameter.mp413.38MB
14 - Extra Project Prepare yourself for the Future Pandas Version 10/160 - Removal of prior Version Deprecations.mp440.29MB
15 - Appendix Pandas Crash Course/161 - Intro to Tabular Data Pandas.mp410.45MB
15 - Appendix Pandas Crash Course/163 - Create your very first Pandas DataFrame from csv.mp455.52MB
15 - Appendix Pandas Crash Course/164 - Pandas Display Options and the methods head & tail.mp421.89MB
15 - Appendix Pandas Crash Course/165 - First Data Inspection.mp443.21MB
15 - Appendix Pandas Crash Course/166 - Builtin Functions Attributes and Methods with Pandas.mp426.42MB
15 - Appendix Pandas Crash Course/191 - Data with DateTime Information Part 1.mp419.87MB
15 - Appendix Pandas Crash Course/192 - Data with DateTime Information Part 2.mp437.7MB
15 - Appendix Pandas Crash Course/193 - Data with DateTime Information Part 3.mp415.58MB
15 - Appendix Pandas Crash Course/194 - Data with DateTime Information Part 4.mp437.26MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/10 - Data Import from csv file and first Inspection.mp463.07MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/11 - The best and the worst movies Part 1.mp430.86MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/12 - The best and the worst movies Part 2.mp421.93MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/13 - Which Movie would you like to see next.mp441.04MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/14 - What are the most common Words in Movie Titles Taglines and Overviews.mp457.66MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/15 - Are Franchises more successful.mp419.1MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/16 - What are the most successful Franchises.mp427.4MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/17 - The most successful Directors.mp421.73MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/18 - The most successful Actors Part 1.mp443.28MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/19 - The most successful Actors Part 2.mp424.38MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/7 - Project Overview.mp414.8MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/8 - Downloads Project 1.mp49.84MB
2 - Project 1 Explanatory Data Analysis & Data Presentation Movies Dataset/9 - Project Brief for SelfCoders.mp414.22MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/21 - Project Overview.mp46.04MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/22 - What is JSON.mp45.86MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/24 - Project Brief for SelfCoders.mp412.28MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/25 - Importing Data from JSON files.mp456.53MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/26 - JSON and OrientationFormats.mp436.25MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/27 - What is an API The Movie Database API.mp442.88MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/28 - Working with APIs and JSON Part 1.mp432.07MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/29 - How to work with your own APIKEY.mp46.81MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/30 - Working with APIs and JSON Part 2.mp425.54MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/31 - Importing and Storing the Movies Dataset Best Practice.mp435.62MB
3 - Project 2 Data Import Working with APIs and JSON Movies Dataset/32 - Importing and Storing the Movies Dataset Real World Scenario.mp411.92MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/33 - Project Overview.mp42.88MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/35 - Project Brief for SelfCoders.mp426.26MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/36 - First Steps.mp412.68MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/37 - Dropping irrelevant Columns.mp49.06MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/38 - How to handle stringified JSON columns Part 1.mp431.01MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/39 - How to handle stringified JSON columns Part 2.mp414.74MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/40 - How to flatten nested Columns.mp441.2MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/41 - How to clean Numerical Columns Part 1.mp426.29MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/42 - How to clean Numerical Columns Part 2.mp424.5MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/43 - How to clean Columns with DateTime Information.mp411.63MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/44 - How to clean String Text Columns.mp424.91MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/45 - How to remove Duplicates.mp417.11MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/46 - Handling Missing Values & Removing ObervationsRows.mp427.45MB
4 - Project 3 Data Cleaning Tidy up messy Datasets Movies Dataset/47 - Final Steps.mp419.78MB
5 - Project 4 Merging Cleaning & Transforming Data Movies Dataset/48 - Project Overview.mp42.01MB
5 - Project 4 Merging Cleaning & Transforming Data Movies Dataset/50 - Project Brief for SelfCoders.mp410.8MB
5 - Project 4 Merging Cleaning & Transforming Data Movies Dataset/51 - Getting the Datasets.mp417.77MB
5 - Project 4 Merging Cleaning & Transforming Data Movies Dataset/52 - Preparing the Data for Merge.mp46.69MB
5 - Project 4 Merging Cleaning & Transforming Data Movies Dataset/53 - Merging the Data Left Join.mp413.97MB
5 - Project 4 Merging Cleaning & Transforming Data Movies Dataset/54 - Cleaning and Transforming the new Cast Column.mp433.73MB
5 - Project 4 Merging Cleaning & Transforming Data Movies Dataset/55 - Cleaning and Transforming the new Crew Column.mp426.43MB
5 - Project 4 Merging Cleaning & Transforming Data Movies Dataset/56 - Final Steps.mp43.4MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/57 - Project Overview.mp42.41MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/58 - What is a Database SQL.mp410.6MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/60 - Project Brief for SelfCoders.mp422.11MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/61 - How to create an SQLite Database.mp410.2MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/62 - How to load Data from DataFrames into an SQLite Database.mp448.22MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/63 - How to load Data from SQLite Databases into DataFrames.mp416.46MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/64 - Some simple SQL Queries.mp428.81MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/65 - Some more SQL Queries.mp433.16MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/66 - Join Queries.mp422.84MB
6 - Project 5 Working with Pandas and SQL Databases Movies Dataset/67 - Final Case Study.mp430.29MB