首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Machine Learning, Data Science and Deep Learning with Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2021-9-22 15:12 2025-1-6 17:44 193 9.39 GB 105
二维码链接
[DesireCourse.Net] Udemy - Machine Learning, Data Science and Deep Learning with Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Getting Started/1. Introduction.mp459.61MB
  2. 1. Getting Started/10. [Activity] Python Basics, Part 4 [Optional].mp421.13MB
  3. 1. Getting Started/11. Introducing the Pandas Library [Optional].mp4123.11MB
  4. 1. Getting Started/2. Udemy 101 Getting the Most From This Course.mp419.78MB
  5. 1. Getting Started/4. [Activity] WINDOWS Installing and Using Anaconda & Course Materials.mp4102.77MB
  6. 1. Getting Started/5. [Activity] MAC Installing and Using Anaconda & Course Materials.mp496.53MB
  7. 1. Getting Started/6. [Activity] LINUX Installing and Using Anaconda & Course Materials.mp480.22MB
  8. 1. Getting Started/7. Python Basics, Part 1 [Optional].mp432.98MB
  9. 1. Getting Started/8. [Activity] Python Basics, Part 2 [Optional].mp420.63MB
  10. 1. Getting Started/9. [Activity] Python Basics, Part 3 [Optional].mp410.08MB
  11. 10. Deep Learning and Neural Networks/1. Deep Learning Pre-Requisites.mp474.18MB
  12. 10. Deep Learning and Neural Networks/10. [Activity] Using Keras to Predict Political Affiliations.mp488.19MB
  13. 10. Deep Learning and Neural Networks/11. Convolutional Neural Networks (CNN's).mp493.09MB
  14. 10. Deep Learning and Neural Networks/12. [Activity] Using CNN's for handwriting recognition.mp469.57MB
  15. 10. Deep Learning and Neural Networks/13. Recurrent Neural Networks (RNN's).mp469.18MB
  16. 10. Deep Learning and Neural Networks/14. [Activity] Using a RNN for sentiment analysis.mp481.37MB
  17. 10. Deep Learning and Neural Networks/15. [Activity] Transfer Learning.mp4115.27MB
  18. 10. Deep Learning and Neural Networks/16. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.mp418.44MB
  19. 10. Deep Learning and Neural Networks/17. Deep Learning Regularization with Dropout and Early Stopping.mp433.64MB
  20. 10. Deep Learning and Neural Networks/18. The Ethics of Deep Learning.mp4128.25MB
  21. 10. Deep Learning and Neural Networks/19. Learning More about Deep Learning.mp438.65MB
  22. 10. Deep Learning and Neural Networks/2. The History of Artificial Neural Networks.mp479.99MB
  23. 10. Deep Learning and Neural Networks/3. [Activity] Deep Learning in the Tensorflow Playground.mp4141.58MB
  24. 10. Deep Learning and Neural Networks/4. Deep Learning Details.mp464.22MB
  25. 10. Deep Learning and Neural Networks/5. Introducing Tensorflow.mp464.16MB
  26. 10. Deep Learning and Neural Networks/7. [Activity] Using Tensorflow, Part 1.mp4118.23MB
  27. 10. Deep Learning and Neural Networks/8. [Activity] Using Tensorflow, Part 2.mp4104.55MB
  28. 10. Deep Learning and Neural Networks/9. [Activity] Introducing Keras.mp492.06MB
  29. 11. Final Project/1. Your final project assignment.mp451.64MB
  30. 11. Final Project/2. Final project review.mp498.51MB
  31. 12. You made it!/1. More to Explore.mp4104.69MB
  32. 2. Statistics and Probability Refresher, and Python Practice/1. Types of Data.mp4112.17MB
  33. 2. Statistics and Probability Refresher, and Python Practice/10. [Activity] Covariance and Correlation.mp4167.41MB
  34. 2. Statistics and Probability Refresher, and Python Practice/11. [Exercise] Conditional Probability.mp4125.15MB
  35. 2. Statistics and Probability Refresher, and Python Practice/12. Exercise Solution Conditional Probability of Purchase by Age.mp422.01MB
  36. 2. Statistics and Probability Refresher, and Python Practice/13. Bayes' Theorem.mp486.08MB
  37. 2. Statistics and Probability Refresher, and Python Practice/2. Mean, Median, Mode.mp482.7MB
  38. 2. Statistics and Probability Refresher, and Python Practice/3. [Activity] Using mean, median, and mode in Python.mp461.93MB
  39. 2. Statistics and Probability Refresher, and Python Practice/4. [Activity] Variation and Standard Deviation.mp4156.35MB
  40. 2. Statistics and Probability Refresher, and Python Practice/5. Probability Density Function; Probability Mass Function.mp442.49MB
  41. 2. Statistics and Probability Refresher, and Python Practice/6. Common Data Distributions.mp4105.82MB
  42. 2. Statistics and Probability Refresher, and Python Practice/7. [Activity] Percentiles and Moments.mp4159.62MB
  43. 2. Statistics and Probability Refresher, and Python Practice/8. [Activity] A Crash Course in matplotlib.mp4182.27MB
  44. 2. Statistics and Probability Refresher, and Python Practice/9. [Activity] Advanced Visualization with Seaborn.mp4147.82MB
  45. 3. Predictive Models/1. [Activity] Linear Regression.mp4144.36MB
  46. 3. Predictive Models/2. [Activity] Polynomial Regression.mp496.61MB
  47. 3. Predictive Models/3. [Activity] Multiple Regression, and Predicting Car Prices.mp473.85MB
  48. 3. Predictive Models/4. Multi-Level Models.mp469.52MB
  49. 4. Machine Learning with Python/1. Supervised vs. Unsupervised Learning, and TrainTest.mp4144.92MB
  50. 4. Machine Learning with Python/10. [Activity] LINUX Installing Graphviz.mp47.05MB
  51. 4. Machine Learning with Python/11. Decision Trees Concepts.mp4125.19MB
  52. 4. Machine Learning with Python/12. [Activity] Decision Trees Predicting Hiring Decisions.mp4134.38MB
  53. 4. Machine Learning with Python/13. Ensemble Learning.mp495.42MB
  54. 4. Machine Learning with Python/14. [Activity] XGBoost.mp4102.09MB
  55. 4. Machine Learning with Python/15. Support Vector Machines (SVM) Overview.mp465.67MB
  56. 4. Machine Learning with Python/16. [Activity] Using SVM to cluster people using scikit-learn.mp446.71MB
  57. 4. Machine Learning with Python/2. [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression.mp482.5MB
  58. 4. Machine Learning with Python/3. Bayesian Methods Concepts.mp458.05MB
  59. 4. Machine Learning with Python/4. [Activity] Implementing a Spam Classifier with Naive Bayes.mp4125.19MB
  60. 4. Machine Learning with Python/5. K-Means Clustering.mp4104MB
  61. 4. Machine Learning with Python/6. [Activity] Clustering people based on income and age.mp482.36MB
  62. 4. Machine Learning with Python/7. Measuring Entropy.mp452.08MB
  63. 4. Machine Learning with Python/8. [Activity] WINDOWS Installing Graphviz.mp42.07MB
  64. 4. Machine Learning with Python/9. [Activity] MAC Installing Graphviz.mp414.84MB
  65. 5. Recommender Systems/1. User-Based Collaborative Filtering.mp4124.65MB
  66. 5. Recommender Systems/2. Item-Based Collaborative Filtering.mp4108.57MB
  67. 5. Recommender Systems/3. [Activity] Finding Movie Similarities.mp4152.01MB
  68. 5. Recommender Systems/4. [Activity] Improving the Results of Movie Similarities.mp4136.49MB
  69. 5. Recommender Systems/5. [Activity] Making Movie Recommendations to People.mp4188.51MB
  70. 5. Recommender Systems/6. [Exercise] Improve the recommender's results.mp4128.73MB
  71. 6. More Data Mining and Machine Learning Techniques/1. K-Nearest-Neighbors Concepts.mp459.24MB
  72. 6. More Data Mining and Machine Learning Techniques/2. [Activity] Using KNN to predict a rating for a movie.mp4200.58MB
  73. 6. More Data Mining and Machine Learning Techniques/3. Dimensionality Reduction; Principal Component Analysis.mp498.55MB
  74. 6. More Data Mining and Machine Learning Techniques/4. [Activity] PCA Example with the Iris data set.mp4155.8MB
  75. 6. More Data Mining and Machine Learning Techniques/5. Data Warehousing Overview ETL and ELT.mp4150.65MB
  76. 6. More Data Mining and Machine Learning Techniques/6. Reinforcement Learning.mp4189.7MB
  77. 6. More Data Mining and Machine Learning Techniques/7. [Activity] Reinforcement Learning & Q-Learning with Gym.mp477.97MB
  78. 6. More Data Mining and Machine Learning Techniques/8. Understanding a Confusion Matrix.mp414.84MB
  79. 6. More Data Mining and Machine Learning Techniques/9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).mp425.12MB
  80. 7. Dealing with Real-World Data/1. BiasVariance Tradeoff.mp495.81MB
  81. 7. Dealing with Real-World Data/10. Binning, Transforming, Encoding, Scaling, and Shuffling.mp447.91MB
  82. 7. Dealing with Real-World Data/2. [Activity] K-Fold Cross-Validation to avoid overfitting.mp476.1MB
  83. 7. Dealing with Real-World Data/3. Data Cleaning and Normalization.mp4112.36MB
  84. 7. Dealing with Real-World Data/4. [Activity] Cleaning web log data.mp4190.99MB
  85. 7. Dealing with Real-World Data/5. Normalizing numerical data.mp456.9MB
  86. 7. Dealing with Real-World Data/6. [Activity] Detecting outliers.mp436.33MB
  87. 7. Dealing with Real-World Data/7. Feature Engineering and the Curse of Dimensionality.mp441.72MB
  88. 7. Dealing with Real-World Data/8. Imputation Techniques for Missing Data.mp449.03MB
  89. 7. Dealing with Real-World Data/9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.mp436.35MB
  90. 8. Apache Spark Machine Learning on Big Data/10. TF IDF.mp4100.04MB
  91. 8. Apache Spark Machine Learning on Big Data/11. [Activity] Searching Wikipedia with Spark.mp4103MB
  92. 8. Apache Spark Machine Learning on Big Data/12. [Activity] Using the Spark 2.0 DataFrame API for MLLib.mp4105.68MB
  93. 8. Apache Spark Machine Learning on Big Data/3. [Activity] Installing Spark - Part 1.mp483.63MB
  94. 8. Apache Spark Machine Learning on Big Data/4. [Activity] Installing Spark - Part 2.mp4111.98MB
  95. 8. Apache Spark Machine Learning on Big Data/5. Spark Introduction.mp4127.54MB
  96. 8. Apache Spark Machine Learning on Big Data/6. Spark and the Resilient Distributed Dataset (RDD).mp4140.62MB
  97. 8. Apache Spark Machine Learning on Big Data/7. Introducing MLLib.mp481.23MB
  98. 8. Apache Spark Machine Learning on Big Data/8. Introduction to Decision Trees in Spark.mp4134.01MB
  99. 8. Apache Spark Machine Learning on Big Data/9. [Activity] K-Means Clustering in Spark.mp4117.87MB
  100. 9. Experimental Design ML in the Real World/1. Deploying Models to Real-Time Systems.mp433.05MB
  101. 9. Experimental Design ML in the Real World/2. AB Testing Concepts.mp4141.84MB
  102. 9. Experimental Design ML in the Real World/3. T-Tests and P-Values.mp495.66MB
  103. 9. Experimental Design ML in the Real World/4. [Activity] Hands-on With T-Tests.mp4113.84MB
  104. 9. Experimental Design ML in the Real World/5. Determining How Long to Run an Experiment.mp451.33MB
  105. 9. Experimental Design ML in the Real World/6. AB Test Gotchas.mp4139.78MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统