首页 磁力链接怎么用

[FreeCoursesOnline.Me] Coursera - Practical Reinforcement Learning

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2019-5-12 10:09 2024-12-14 21:05 136 1.41 GB 54
二维码链接
[FreeCoursesOnline.Me] Coursera - Practical Reinforcement Learning的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 001.Welcome/001. Why should you care.mp432.42MB
  2. 001.Welcome/002. Reinforcement learning vs all.mp410.8MB
  3. 002.Reinforcement Learning/003. Multi-armed bandit.mp417.88MB
  4. 002.Reinforcement Learning/004. Decision process & applications.mp423.01MB
  5. 003.Black box optimization/005. Markov Decision Process.mp418MB
  6. 003.Black box optimization/006. Crossentropy method.mp436.01MB
  7. 003.Black box optimization/007. Approximate crossentropy method.mp419.27MB
  8. 003.Black box optimization/008. More on approximate crossentropy method.mp422.89MB
  9. 004.All the cool stuff that isn't in the base track/009. Evolution strategies core idea.mp420.86MB
  10. 004.All the cool stuff that isn't in the base track/010. Evolution strategies math problems.mp417.73MB
  11. 004.All the cool stuff that isn't in the base track/011. Evolution strategies log-derivative trick.mp427.84MB
  12. 004.All the cool stuff that isn't in the base track/012. Evolution strategies duct tape.mp421.17MB
  13. 004.All the cool stuff that isn't in the base track/013. Blackbox optimization drawbacks.mp415.21MB
  14. 005.Striving for reward/014. Reward design.mp449.7MB
  15. 006.Bellman equations/015. State and Action Value Functions.mp437.31MB
  16. 006.Bellman equations/016. Measuring Policy Optimality.mp418.08MB
  17. 007.Generalized Policy Iteration/017. Policy evaluation & improvement.mp431.92MB
  18. 007.Generalized Policy Iteration/018. Policy and value iteration.mp424.16MB
  19. 008.Model-free learning/019. Model-based vs model-free.mp428.78MB
  20. 008.Model-free learning/020. Monte-Carlo & Temporal Difference; Q-learning.mp430.11MB
  21. 008.Model-free learning/021. Exploration vs Exploitation.mp428.23MB
  22. 008.Model-free learning/022. Footnote Monte-Carlo vs Temporal Difference.mp410.3MB
  23. 009.On-policy vs off-policy/023. Accounting for exploration. Expected Value SARSA..mp437.73MB
  24. 010.Experience Replay/024. On-policy vs off-policy; Experience replay.mp426.72MB
  25. 011.Limitations of Tabular Methods/025. Supervised & Reinforcement Learning.mp450.61MB
  26. 011.Limitations of Tabular Methods/026. Loss functions in value based RL.mp433.76MB
  27. 011.Limitations of Tabular Methods/027. Difficulties with Approximate Methods.mp447.03MB
  28. 012.Case Study Deep Q-Network/028. DQN bird's eye view.mp427.76MB
  29. 012.Case Study Deep Q-Network/029. DQN the internals.mp429.63MB
  30. 013.Honor/030. DQN statistical issues.mp419.22MB
  31. 013.Honor/031. Double Q-learning.mp420.46MB
  32. 013.Honor/032. More DQN tricks.mp433.94MB
  33. 013.Honor/033. Partial observability.mp457.23MB
  34. 014.Policy-based RL vs Value-based RL/034. Intuition.mp434.87MB
  35. 014.Policy-based RL vs Value-based RL/035. All Kinds of Policies.mp416.05MB
  36. 014.Policy-based RL vs Value-based RL/036. Policy gradient formalism.mp431.56MB
  37. 014.Policy-based RL vs Value-based RL/037. The log-derivative trick.mp413.29MB
  38. 015.REINFORCE/038. REINFORCE.mp431.42MB
  39. 016.Actor-critic/039. Advantage actor-critic.mp424.63MB
  40. 016.Actor-critic/040. Duct tape zone.mp417.53MB
  41. 016.Actor-critic/041. Policy-based vs Value-based.mp416.79MB
  42. 016.Actor-critic/042. Case study A3C.mp426.09MB
  43. 016.Actor-critic/043. A3C case study (2 2).mp414.96MB
  44. 016.Actor-critic/044. Combining supervised & reinforcement learning.mp424.02MB
  45. 017.Measuting exploration/045. Recap bandits.mp424.66MB
  46. 017.Measuting exploration/046. Regret measuring the quality of exploration.mp421.27MB
  47. 017.Measuting exploration/047. The message just repeats. 'Regret, Regret, Regret.'.mp418.43MB
  48. 018.Uncertainty-based exploration/048. Intuitive explanation.mp422.26MB
  49. 018.Uncertainty-based exploration/049. Thompson Sampling.mp417.09MB
  50. 018.Uncertainty-based exploration/050. Optimism in face of uncertainty.mp416.54MB
  51. 018.Uncertainty-based exploration/051. UCB-1.mp422.19MB
  52. 018.Uncertainty-based exploration/052. Bayesian UCB.mp440.8MB
  53. 019.Planning with Monte Carlo Tree Search/053. Introduction to planning.mp451.63MB
  54. 019.Planning with Monte Carlo Tree Search/054. Monte Carlo Tree Search.mp430.92MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统