3 - Project #1 - Employee Salary Predictions Using AWS SageMaker Linear Learner/24 - Coding Task #1B - Using AWS SageMaker Studio (Method #2).mp488.43MB
3 - Project #1 - Employee Salary Predictions Using AWS SageMaker Linear Learner/25 - Coding Task #2 - Import Key libraries and dataset.mp467.48MB
3 - Project #1 - Employee Salary Predictions Using AWS SageMaker Linear Learner/26 - Coding Task #3 - Perform Exploratory Data Analysis.mp4144.04MB
3 - Project #1 - Employee Salary Predictions Using AWS SageMaker Linear Learner/27 - Coding Task #4 - Create Training and Testing Dataset.mp491.98MB
3 - Project #1 - Employee Salary Predictions Using AWS SageMaker Linear Learner/28 - Coding Task #5 - Train a Linear Regression Model in SkLearn.mp474.29MB
3 - Project #1 - Employee Salary Predictions Using AWS SageMaker Linear Learner/29 - Coding Task #6 - Evaluate Trained Model Performance.mp462.73MB
3 - Project #1 - Employee Salary Predictions Using AWS SageMaker Linear Learner/30 - Coding Task #7 - Train a Linear Learner Model in AWS SageMaker.mp4483.72MB
3 - Project #1 - Employee Salary Predictions Using AWS SageMaker Linear Learner/31 - Coding Task #8 - Deploy Model & invoke endpoint in SageMaker.mp4125.12MB
4 - Project #2 - Medical Insurance Premium Prediction/32 - Project Overview and Introduction.mp411.44MB
4 - Project #2 - Medical Insurance Premium Prediction/33 - Multiple Linear Regression Intuition.mp420.82MB
4 - Project #2 - Medical Insurance Premium Prediction/34 - Regression Metrics and KPIs - RMSE, MSE, MAE, MAPE.mp483.4MB
4 - Project #2 - Medical Insurance Premium Prediction/35 - Regression Metrics and KPIs - R2 and Adjusted R2.mp483.01MB
5 - Project #3 - Retail Sales Prediction Using AWS SageMaker XGBoost (Regression)/50 - Introduction to Case Study.mp473.16MB
5 - Project #3 - Retail Sales Prediction Using AWS SageMaker XGBoost (Regression)/51 - Basics - What is the difference between Bias & Variance.mp466.42MB
5 - Project #3 - Retail Sales Prediction Using AWS SageMaker XGBoost (Regression)/70 - Coding Task #13 - Retrain the Model Using best (optimized) Hyperparameters.mp497.57MB
6 - Project #4 - Predict Cardiovascular Disease Using PCA & XGBoost (Classification)/71 - Introduction and Project Overview.mp498.53MB
6 - Project #4 - Predict Cardiovascular Disease Using PCA & XGBoost (Classification)/72 - Principal Component Analysis (PCA) Intuition.mp4111.75MB
6 - Project #4 - Predict Cardiovascular Disease Using PCA & XGBoost (Classification)/73 - XGBoost for Classification Tasks (Review Lecture).mp454.98MB
6 - Project #4 - Predict Cardiovascular Disease Using PCA & XGBoost (Classification)/84 - Coding Task #9 - Train XGBoost (SageMaker Built-in) to do Classification Tasks.mp4115.47MB
6 - Project #4 - Predict Cardiovascular Disease Using PCA & XGBoost (Classification)/85 - Coding Task #10 - Deploy Endpoint, Make Inference @ Test Model.mp483.07MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/86 - Project Overview and Introduction.mp496.8MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/87 - What are Convolutional Neural Networks and How do they Learn - Part #1.mp4118.08MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/88 - What are Convolutional Neural Networks and How do they Learn - Part #2.mp4124.29MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/89 - How to Improve CNNs Performance.mp413.27MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/90 - Confusion Matrix.mp440.48MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/91 - LeNet Network Architecture.mp485.72MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/92 - Request AWS SageMaker Service Limit Increase.mp44.99MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/93 - Coding Part #1 #2 - Import Images and Visualize Them.mp4157.85MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/94 - Coding #3 #4 - Upload Training_Testing Data to S3.mp456.04MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/95 - Coding Task #5 - Build and Train CNNs.mp4206.11MB
7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/96 - Coding Task #6 - Deploy Trained Model Using SageMaker.mp470.47MB