首页 磁力链接怎么用

[FreeCoursesOnline.Me] Coursera - Natural Language Processing

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-6-20 10:57 2024-12-30 09:56 220 1.51 GB 43
二维码链接
[FreeCoursesOnline.Me] Coursera - Natural Language Processing的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 001.Introduction to NLP and our course/001. About this course.mp412.59MB
  2. 001.Introduction to NLP and our course/002. Welcome video.mp420.05MB
  3. 001.Introduction to NLP and our course/003. Main approaches in NLP.mp430.05MB
  4. 001.Introduction to NLP and our course/004. Brief overview of the next weeks.mp426.15MB
  5. 001.Introduction to NLP and our course/005. [Optional] Linguistic knowledge in NLP.mp435.03MB
  6. 002.How to from plain texts to their classification/006. Text preprocessing.mp451.26MB
  7. 002.How to from plain texts to their classification/007. Feature extraction from text.mp448.3MB
  8. 002.How to from plain texts to their classification/008. Linear models for sentiment analysis.mp436.13MB
  9. 002.How to from plain texts to their classification/009. Hashing trick in spam filtering.mp461.22MB
  10. 003.Simple deep learning for text classification/010. Neural networks for words.mp450.67MB
  11. 003.Simple deep learning for text classification/011. Neural networks for characters.mp427.92MB
  12. 004.Language modeling it's all about counting!/012. Count! N-gram language models.mp433.9MB
  13. 004.Language modeling it's all about counting!/013. Perplexity is our model surprised with a real text.mp426.78MB
  14. 004.Language modeling it's all about counting!/014. Smoothing what if we see new n-grams.mp427.26MB
  15. 005.Sequence tagging with probabilistic models/015. Hidden Markov Models.mp449.4MB
  16. 005.Sequence tagging with probabilistic models/016. Viterbi algorithm what are the most probable tags.mp439.28MB
  17. 005.Sequence tagging with probabilistic models/017. MEMMs, CRFs and other sequential models for Named Entity Recognition.mp441.69MB
  18. 006.Deep Learning for the same tasks/018. Neural Language Models.mp431.48MB
  19. 006.Deep Learning for the same tasks/019. Whether you need to predict a next word or a label - LSTM is here to help!.mp442.93MB
  20. 007.Word and sentence embeddings/020. Distributional semantics bee and honey vs. bee an bumblebee.mp428.26MB
  21. 007.Word and sentence embeddings/021. Explicit and implicit matrix factorization.mp445.81MB
  22. 007.Word and sentence embeddings/022. Word2vec and doc2vec (and how to evaluate them).mp439.44MB
  23. 007.Word and sentence embeddings/023. Word analogies without magic king man + woman != queen.mp440.07MB
  24. 007.Word and sentence embeddings/024. Why words From character to sentence embeddings.mp442.76MB
  25. 008.Topic models/025. Topic modeling a way to navigate through text collections.mp425.97MB
  26. 008.Topic models/026. How to train PLSA.mp423.52MB
  27. 008.Topic models/027. The zoo of topic models.mp451.26MB
  28. 009.Statistical Machine Translation/028. Introduction to Machine Translation.mp457.14MB
  29. 009.Statistical Machine Translation/029. Noisy channel said in English, received in French.mp421.66MB
  30. 009.Statistical Machine Translation/030. Word Alignment Models.mp443.09MB
  31. 010.Encoder-decoder-attention arhitecture/031. Encoder-decoder architecture.mp422.4MB
  32. 010.Encoder-decoder-attention arhitecture/032. Attention mechanism.mp431.18MB
  33. 010.Encoder-decoder-attention arhitecture/033. How to deal with a vocabulary.mp440.07MB
  34. 010.Encoder-decoder-attention arhitecture/034. How to implement a conversational chat-bot.mp438.18MB
  35. 011.Summarization and simplification tasks/035. Sequence to sequence learning one-size fits all.mp436.74MB
  36. 011.Summarization and simplification tasks/036. Get to the point! Summarization with pointer-generator networks.mp441.02MB
  37. 012.Natural Language Understanding (NLU)/037. Task-oriented dialog systems.mp442.26MB
  38. 012.Natural Language Understanding (NLU)/038. Intent classifier and slot tagger (NLU).mp447.95MB
  39. 012.Natural Language Understanding (NLU)/039. Adding context to NLU.mp417.07MB
  40. 012.Natural Language Understanding (NLU)/040. Adding lexicon to NLU.mp428.37MB
  41. 013.Dialog Manager (DM)/041. State tracking in DM.mp444.94MB
  42. 013.Dialog Manager (DM)/042. Policy optimisation in DM.mp427.08MB
  43. 013.Dialog Manager (DM)/043. Final remarks.mp421.62MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统