首页 磁力链接怎么用

Deploying Scalable Machine Learning for Data Science

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2018-11-23 04:06 2024-12-1 22:45 146 177.79 MB 32
二维码链接
Deploying Scalable Machine Learning for Data Science的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 5.4. Running ML Services in Containers/19.Example Docker build process.mp411.13MB
  2. 1.Introduction/01.Scaling ML models.mp43.21MB
  3. 1.Introduction/02.What you should know.mp42.52MB
  4. 2.1. The Need to Scale ML Models/03.Building and running ML models for data scientists.mp49.57MB
  5. 2.1. The Need to Scale ML Models/04.Building and deploying ML models for production use.mp47.67MB
  6. 2.1. The Need to Scale ML Models/05.Definition of scaling ML for production.mp47.15MB
  7. 2.1. The Need to Scale ML Models/06.Overview of tools and techniques for scalable ML.mp49.82MB
  8. 3.2. Design Patterns for Scalable ML Applications/07.Horizontal vs. vertical scaling.mp46.53MB
  9. 3.2. Design Patterns for Scalable ML Applications/08.Running models as services.mp42.99MB
  10. 3.2. Design Patterns for Scalable ML Applications/09.APIs for ML model services.mp48.33MB
  11. 3.2. Design Patterns for Scalable ML Applications/10.Load balancing and clusters of servers.mp46.57MB
  12. 3.2. Design Patterns for Scalable ML Applications/11.Scaling horizontally with containers.mp44.66MB
  13. 4.3. Deploying ML Models as Services/12.Services encapsulate ML models.mp44.45MB
  14. 4.3. Deploying ML Models as Services/13.Using Plumber to create APIs for R programs.mp46.43MB
  15. 4.3. Deploying ML Models as Services/14.Using Flask to create APIs for Python programs.mp48.51MB
  16. 4.3. Deploying ML Models as Services/15.Best practices for API design for ML services.mp41.99MB
  17. 5.4. Running ML Services in Containers/16.Containers bundle ML model components.mp46.67MB
  18. 5.4. Running ML Services in Containers/17.Introduction to Docker.mp45.93MB
  19. 5.4. Running ML Services in Containers/18.Building Docker images with Dockerfiles.mp47.68MB
  20. 5.4. Running ML Services in Containers/20.Using Docker registries to manage images.mp46.47MB
  21. 6.5. Scaling ML Services with Kubernetes/21.Running services in clusters.mp44.55MB
  22. 6.5. Scaling ML Services with Kubernetes/22.Introduction to Kubernetes.mp45.69MB
  23. 6.5. Scaling ML Services with Kubernetes/23.Creating a Kubernetes cluster.mp47.52MB
  24. 6.5. Scaling ML Services with Kubernetes/24.Deploying containers in a Kubernetes cluster.mp45.22MB
  25. 6.5. Scaling ML Services with Kubernetes/25.Scaling up a Kubernetes cluster.mp45.01MB
  26. 6.5. Scaling ML Services with Kubernetes/26.Autoscaling a Kubernetes cluster.mp41.6MB
  27. 7.6. ML Services in Production/27.Monitoring service performance.mp43.97MB
  28. 7.6. ML Services in Production/28.Service performance data.mp44.6MB
  29. 7.6. ML Services in Production/29.Docker container monitoring.mp42.72MB
  30. 7.6. ML Services in Production/30.Kubernetes monitoring.mp42.83MB
  31. 8.Conclusion/31.Best practices for scaling ML.mp43.63MB
  32. 8.Conclusion/32.Next steps.mp42.17MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统